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SYLLABUS: 

Acting under uncertainty – Bayesian inference – Naïve Bayes 

models. Probabilistic reasoning – Bayesian networks – exact 

inference in BN – approximate inference in BN – causal networks. 

CS 3491 – ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 

UNIT II PROBABILISTIC REASONING 
 

 
PART A 

1. Define uncertainty and list the causes of uncertainty. 

Uncertainty: 

 The knowledge representation, A→B, means if A is true then B is true, 

but a situation where not sure about whether A is true or not then cannot 

express this statement, this situation is called uncertainty. 

 So to represent uncertain knowledge, uncertain reasoning or probabilistic 

reasoning is used.

Causes of uncertainty: 

1. Causes of uncertainty in the real world 

2. Information occurred from unreliable sources. 

3. Experimental Errors 

4. Equipment fault 

5. Temperature variation 

6. Climate change. 

 
2. Define Probabilistic reasoning. Mention the need of probabilistic 

reasoning in AI 

Probabilistic reasoning: 

 Probabilistic reasoning is a way of knowledge representation, the 

concept of probability is applied to indicate the uncertainty in 

knowledge.

Need of probabilistic reasoning in AI: 

 When there are unpredictable outcomes. 

 When specifications or possibilities of predicates becomes too large to 

handle. 

 When an unknown error occurs during an experiment. 
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3. List the Ways to solve problems with uncertain knowledge. 

 Bayes' rule

 Bayesian Statistics

 
4. Define Probability and the probability of occurrence. 

 Probability can be defined as a chance that an uncertain event will 

occur.

 The value of probability always remains between 0 and 1 that 

represent ideal uncertainties.

o 0 ≤ P(A) ≤ 1, where P(A) is the probability of an event A. 

o P(A) = 0, indicates total uncertainty in an event A. 

o P(A) =1, indicates total certainty in an event A. 

 Formula to find the probability of an uncertain event
 

 
5. Define the terms event, sample space, random variables, prior 

probability and posterior probability. 

 Event: Each possible outcome of a variable is called an event.

 Sample space: The collection of all possible events is called sample 

space.

 Random variables: Random variables are used to represent the 

events and objects in the real world.

 Prior probability: The prior probability of an event is probability 

computed before observing new information.

 Posterior Probability: The probability that is calculated after all 

evidence or information has taken into account. It is a combination of 

prior probability and new information.

 
6. Define Conditional probability. 

 Conditional probability is a probability of occurring an event when 

another event has already happened.

 Let's suppose, to calculate the event A when event B has already 

occurred, "the probability of A under the conditions of B", it is:
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Where P(A⋀B)= Joint probability of a and B 

P(B)= Marginal probability of B. 

 
7. In a class, there are 70% of the students who like English and 40% 

of the students who likes English and mathematics, and then what 

is the percent of students those who like English also like 

mathematics? 

Solution: 

Let, A is an event that a student likes Mathematics 

B is an event that a student likes English. 
 

Hence, 57% are the students who like English also like Mathematics 

 

8. Define Bayesian Inference. 

 Bayesian inference is a probabilistic approach to machine learning that 

provides estimates of the probability of specific events. 

 Bayesian inference is a statistical method for understanding the 

uncertainty inherent in prediction problems. 

 Bayesian inference algorithm can be viewed as a Markov Chain Monte 

Carlo algorithm that uses prior probability distributions to optimize the 

likelihood function. 

 
9. List Bayes Theorem or Bayes Rule 

 Bayes' theorem can be derived using product rule and conditional 

probability of event A with known event B:

 Product Rule:

1. P(A ⋀ B)= P(A|B) P(B) or 

2. P(A ⋀ B)= P(B|A) P(A) 

 Conditional Probability:

 Let A and B are events, 

 P(A|B) is the conditional probability of A given B, 

 P(B|A) is the conditional probability of B given A. 

 Equating right hand side of both the equations will get: 
 

The above equation (a) is called as Bayes' rule or Bayes' theorem. 

This equation is basic of most modern AI systems for probabilistic 

inference. 
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 P(A|B) is known as posterior, is the Probability of hypothesis A 

when occurred an evidence B. 

 P(B|A) is called the likelihood, in which hypothesis is true, then 

calculate the probability of evidence. 

 P(A) is called the prior probability, probability of hypothesis before 

considering the evidence 

 P(B) is called marginal probability, pure probability of an 

evidence. 

 
10. Suppose we want to perceive the effect of some unknown cause, 

and want to compute that cause, then the Bayes' rule becomes: 

 
 

 

what is the probability that a patient has diseases 

with a stiff neck? 

Given Data: 

meningitis 

A doctor is aware that disease meningitis causes a patient to have 

a stiff neck, and it occurs 80% of the time. He is also aware of 

some more facts, which are given as follows: 

o The Known probability that a patient has meningitis disease is 

1/30,000. 

o The Known probability that a patient has a stiff neck is 2%. 

Solution 

Let a be the proposition that patient has stiff neck and b be the 

proposition that patient has meningitis. 

So, calculate the following as: 

P(a|b) = 0.8 

P(b) = 1/30000 

P(a)= .02 
 

Hence, assume that 1 patient out of 750 patients has meningitis 

disease with a stiff neck. 

 
11. Consider two events: A (it will rain tomorrow) and B (the sun will 

shine tomorrow). 

 Use Bayes’ theorem to compute the posterior probability of each event 

occurring, given the resulting weather conditions for today: 

P(A|sunny) = P(sunny|A) * P(A) / P(sunny) 
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P(B|sunny) = P(sunny|B) * P(B) / P(sunny) 

where sunny is our evidence (the resulting weather condition for 

today). 

 
12. What are the Application of Bayes' theorem in Artificial 

intelligence? 

 It is used to calculate the next step of the robot when the already 

executed step is given.

 Bayes' theorem is helpful in weather forecasting.

 
13. Define Bayesian Network. 

 "A Bayesian network is a probabilistic graphical model which 

represents a set of variables and their conditional dependencies using 

a directed acyclic graph."

 It is also called a Bayes network, belief network, decision network, 

or Bayesian model.

 Bayesian Network can be used for building models from data and 

experts opinions, and it consists of two parts:

o Directed Acyclic Graph 

o Table of conditional probabilities 

 
14. Define Joint probability distribution. 

 If variables are x1, x2, x3,....., xn, then the probabilities of a different 

combination of x1, x2, x3.. xn, are known as Joint probability 

distribution.

 P[x1, x2, x3,   ,xn], can be written as the following way in terms of the

joint probability distribution. 

= P[x1| x2, x3,....., xn]. p[x2, x3,  , xn] 

= P[x1| x2, x3,....., xn]P[x2|x3,....., xn]  P[xn-1|xn]P[xn]. 

 In general for each variable Xi,

P(Xi|Xi-1, ............. , X1) = P(Xi |Parents(Xi )) 

 
15. Write an algorithm for Constructing Bayesian Network 
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16. Define Global semantics and local semantics. 

Global Semantics 
 

Local Semantics 
 

17. List the ways to understand the semantics of Bayesian Network 

There are two ways to understand the semantics of the Bayesian 

network, which is given below: 

1. To understand the network as the representation of the Joint 

probability distribution. 

It is helpful to understand how to construct the network. 

2. To understand the network as an encoding of a collection of 

conditional independence statements. 

It is helpful in designing inference procedure. 

 
18. What are the Applications of Bayesian networks in AI? 

1. Spam filtering 

2. Bio monitoring 

3. Information retrieval 

4. Image processing 

5. Gene regulatory network 

6. Turbo code 

7. Document classification 

 
19. Define Bayesian Inference. 

 Bayesian Network is to perform inference, which computes the 

marginal probability P(V=v) for each node V and each possible 

instantiation v.

 Inference can also be done on a Bayesian network when the values of 

some nodes are known (as evidence) and wish to compute the 

likelihood of values of other nodes.

 There are two types of inference on Bayesian networks: exact and 

approximate.

 Exact inference algorithms compute the exact values of each marginal 

or posterior probability, while approximate inference algorithms 

sacrifice some accuracy of the probabilities to report results quickly.
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20. Define Exact Inference. 

 The goal of an exact inference algorithm is to report the exact values 

for either the marginal (P(V = v)) or posterior probabilities (P(V = v|e)) 

for each instantiation v of each node V, possible given some evidence e 

of other node values.

 
21. List the common exact inference algorithms – 

 Pearl’s algorithm

 Lauritzen-Spiegelhalter algorithm.

 
22. Define Pearl’s Algorithm. 

 Pearl’s algorithm is a linear-time algorithm that computes the 

posterior probabilities of each node given evidence of singly-connected 

networks.

 Pearl introduced the notation λ (X = x) for the diagnostic support of a 

node X with value x, which is the probability of evidence below X given 

that X = x.

 
23. Define Lauritzen-Spiegelhalter (LS) Algorithm. 

 The Lauritzen-Spiegelhalter (LS) algorithm is an inference algorithm 

for Bayesian networks that works on all models.

 

24. Define Causal Network or Causal Bayesian Network 

 A causal network is an acyclic digraph arising from an evolution of 

a substitution system, and representing its history.

 In an evolution of a multiway system, each substitution event is a 

vertex in a causal network.

 Two events which are related by causal dependence, meaning one 

occurs just before the other, have an edge between the corresponding 

vertices in the causal network.

 More precisely, the edge is a directed edge leading from the past event 

to the future event.

 
25. Define Structural Causal Models (SCMs). 

 SCMs consist of two parts: a graph, which visualizes causal 

connections, and equations, which express the details of the 

connections. a graph is a mathematical construction that consists 

of vertices (nodes) and edges (links).

 SCMs use a special kind of graph, called a Directed Acyclic Graph 

(DAG), for which all edges are directed and no cycles exist.

 DAGs are a common starting place for causal inference.

https://mathworld.wolfram.com/AcyclicDigraph.html
https://mathworld.wolfram.com/SubstitutionSystem.html
https://mathworld.wolfram.com/MultiwaySystem.html
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26. List the purpose of do-operator in causal networks. 

 The do-operator is a mathematical representation of a physical 

intervention.

 If the model starts with Z → X → Y, simulate an intervention in X by 

deleting all the incoming arrows to X, and manually setting X to some 

value x_0.

 
27. List the rules of Do-Calculus. 
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UNCERTAINITY & PROBABILISTIC REASONING 

1.1 Uncertainty: 

1.1.1 Causes of uncertainty 

1.2 Probabilistic reasoning: 

1.2.1 Need of probabilistic reasoning in AI 

1.2.2 Ways to solve problems with uncertain 

knowledge 

1.2.3 Probability 

1.2.4 Conditional probability 

1.2.4.1 Example 

PART B 

 
1. Explain the concept of uncertainty and acting under uncertainty with 

suitable example. Explain in detail about probabilistic reasoning. 

 

Agents almost never have access to the whole truth about their environment. 

Agents must, therefore, act under uncertainty. 

 
Handling uncertain knowledge 

In this section, we look more closely at the nature of uncertain knowledge. 

We will use a simple diagnosis example to illustrate the concepts involved. 

Diagnosis whether for medicine, automobile repair, or whatever-is a task that 

almost always involves uncertainty. Let us try to write rules for dental diagnosis 

using first-order logic, so that we can see how the logical approach breaks down. 

Consider the following rule: 

 

 
The problem is that this rule is wrong. Not all patients with toothaches have 

cavities; some of them have gum disease, an abscess, or one of several other 

problems: 

 

Unfortunately, in order to make the rule true, we have to add an almost unlimited 

list of possible causes. We could try turning the rule into a causal rule: 
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But this rule is not right either; not all cavities cause pain The only way to fix the 

rule is to make it logically exhaustive: to augment the left-hand side with all the 

qualifications required for a cavity to cause a toothache. Even then, for the 

purposes of diagnosis, one must also take into account the possibility that the 

patient might have a toothache and a cavity that are unconnected. Trying to use 

first-order logic to cope with a domain like medical diagnosis thus fails for three 

main reasons: 

 
0 Laziness: It is too much work to list the complete set of antecedents or 

consequents needed to ensure an exceptionless rule and too hard to use such 

rules. 

0 Theoretical ignorance: Medical science has no complete theory for the domain. 

0 Practical ignorance: Even if we know all the rules, we might be uncertain about 

a particular patient because not all the necessary tests have been or can be run. 

 
The connection between toothaches and cavities is just not a logical 

consequence in either direction. This is typical of the medical domain, as well as 

most other judgmental domains: law, business, design, automobile repair, 

gardening, dating, and so on. The agent's knowledge can at best provide only a 

degree of belief in the relevant sentences. Our main tool for dealing with degrees of 

belief will be probability theory, which assigns to each sentence a numerical 

degree of belief between 0 and 1. 

 
Probability provides a way of summarizing the uncertainty that comes from 

our laziness and ignorance. We might not know for sure what afflicts a particular 

patient, but we believe that there is, say, an 80% chance-that is, a probability of 

0.8-that the patient has a cavity if he or she has a toothache. 

 
That is, we expect that out of all the situations that are indistinguishable 

from the current situation as far as the agent's knowledge goes, the patient will  

have a cavity in 80% of them. This belief could be derived from statistical data-80% 

of the toothache patients seen so far have had cavities-or from some general rules, 

or from a combination of evidence sources. 

 
The 80% summarizes those cases in which all the factors needed for a cavity 

to cause a toothache are present and other cases in which the patient has both 

toothache and cavity but the two are unconnected. The missing 20% summarizes 

all the other possible causes of toothache that we are too lazy or ignorant to confirm 

or deny. 
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Design for a decision-theoretic agent 

Below algorithm sketches the structure of an agent that uses decision theory 

to select actions. The agent is identical, at an abstract level, to the logical agent. 

The primary difference is that the decision-theoretic agent's knowledge of the 

current state is uncertain; the agent's belief state is a representation of the 

probabilities of all possible actual states of the world. As time passes, the agent 

accumulates more evidence and its belief state changes. Given the belief state, the 

agent can make probabilistic predictions of action outcomes and hence select the 

action with highest expected utility. 

 
1.1.1 Causes of uncertainty: 

Causes of uncertainty in the real world 

1. Information occurred from unreliable sources. 

2. Experimental Errors 

3. Equipment fault 

4. Temperature variation 

5. Climate change. 

 
1.2 Probabilistic reasoning: 

 Probabilistic reasoning is a way of knowledge representation, the 

concept of probability is applied to indicate the uncertainty in 

knowledge. 

 
1.2.1 Need of probabilistic reasoning in AI: 

o When there are unpredictable outcomes. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 



 


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P(¬A) = probability of a not happening event. 

P(¬A) + P(A) = 1. 

o When specifications or possibilities of predicates becomes too 

large to handle. 

o When an unknown error occurs during an experiment. 

1.2.2 Ways to solve problems with uncertain knowledge: 

o Bayes' rule 

o Bayesian Statistics 

 
1.2.3 Probability: 

 Probability can be defined as a chance that an uncertain event 

will occur. 

 The value of probability always remains between 0 and 1 that 

represent ideal uncertainties. 

o 0 ≤ P(A) ≤ 1, where P(A) is the probability of an event A. 

o P(A) = 0, indicates total uncertainty in an event A. 

o P(A) =1, indicates total certainty in an event A. 

 Formula to find the probability of an uncertain event 
 

 
o Event: Each possible outcome of a variable is called an event. 

o Sample space: The collection of all possible events is called 

sample space. 

o Random variables: Random variables are used to represent the 

events and objects in the real world. 

o Prior probability: The prior probability of an event is 

probability computed before observing new information. 

o Posterior Probability: The probability that is calculated after 

all evidence or information has taken into account. It is a 

combination of prior probability and new information. 

 
1.2.4 Conditional probability: 

 Conditional probability is a probability of occurring an event when 

another event has already happened. 
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Naive Bayes Model or Naive Bayes Theorem or Bayes Rule 

2.1 Bayesian Inference 

2.2 Bayes Theorem or Bayes Rule 

2.3 Example - Applying Bayes' rule: 

2.4 Application of Bayes' theorem in Artificial intelligence 

 Let's suppose, to calculate the event A when event B has already 

occurred, "the probability of A under the conditions of B", it is: 
 

Where P(A⋀B)= Joint probability of a and B 

P(B)= Marginal probability of B. 

 
 If the probability of A is given and to find the probability of B, then it 

is: 
 

 

 
1.2.4.1 Example: 

In a class, there are 70% of the students who like English and 40% of 

the students who likes English and mathematics, and then what is 

the percent of students those who like English also like mathematics? 

Solution: 

Let, A is an event that a student likes Mathematics 

B is an event that a student likes English. 

 
 

 
Hence, 57% are the students who like English also like Mathematics 

 

 
2. Explain in detail about Bayesian inference and Naive Bayes Model or Naive 

Bayes Theorem or Bayes Rule. 

2.1 Bayesian Inference 

 Bayesian inference is a probabilistic approach to machine learning that 

provides estimates of the probability of specific events. 

 Bayesian inference is a statistical method for understanding the 

uncertainty inherent in prediction problems. 
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  

  

  

  

  

 Bayesian inference algorithm can be viewed as a Markov Chain Monte 

Carlo algorithm that uses prior probability distributions to optimize the 

likelihood function. 

 The basis of Bayesian inference is the notion of apriori and a posteriori 

probabilities. 

o The priori probability is the probability of an event before any 

evidence is considered. 

o The posteriori probability is the probability of an event after 

taking into account all available evidence. 

 For example, if we want to know the probability that it will rain 

tomorrow, our priori probability would be based on our knowledge of 

the weather patterns in our area. 

 
2.2 Bayes Theorem or Bayes Rule 

 Bayes' theorem can be derived using product rule and conditional 

probability of event A with known event B: 

 Product Rule: 

3. P(A ⋀ B)= P(A|B) P(B) or 

4. P(A ⋀ B)= P(B|A) P(A) 
 

 
The above equation (a) is called as Bayes' rule or Bayes' theorem. 

This equation is basic of most modern AI systems for probabilistic 

inference. 

 P(A|B) is known as posterior, is the Probability of hypothesis A 

when occurred an evidence B. 

 P(B|A) is called the likelihood, in which hypothesis is true, then 

calculate the probability of evidence. 

 P(A) is called the prior probability, probability of hypothesis before 

considering the evidence 

 P(B) is called marginal probability, pure probability of an 

evidence. 

 In general, 

P (B) = P(A)*P(B|Ai), 
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 Hence the Bayes' rule can be written as: 
 

 
 

Where  A1,  A2,  A3,........,  An is  a  set  of  mutually  exclusive  and 

exhaustive events. 

 
2.3 Example 1 - Applying Bayes' rule: 

Suppose we want to perceive the effect of some unknown 

cause, and want to compute that cause, then the Bayes' rule 

becomes: 

 
 

 
what is the probability that a patient has diseases meningitis 

 
 
 
 
 
 
 

 
is 1/30,000. 

with a stiff neck? 

Given Data: 

A doctor is aware that disease meningitis causes a patient to 

have a stiff neck, and it occurs 80% of the time. He is also 

aware of some more facts, which are given as follows: 

The Known probability that a patient has meningitis disease 

The Known probability that a patient has a stiff neck is 2%. 

Solution 

Let a be the proposition that patient has stiff neck and b be the 

proposition that patient has meningitis. 

So, calculate the following as: 

P(a|b) = 0.8 

P(b) = 1/30000 

P(a)= .02 
 

Hence, assume that 1 patient out of 750 patients has meningitis 

disease with a stiff neck. 



CS 3491 – ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING UNIT 2 

 

R.Manickavasagan,AP/CSE 
 

Example 2 - Applying Bayes' rule: 

 Consider two events: A (it will rain tomorrow) and B (the sun will shine 

tomorrow). 

 Use Bayes’ theorem to compute the posterior probability of each event 

occurring, given the resulting weather conditions for today: 

P(A|sunny) = P(sunny|A) * P(A) / P(sunny) 

P(B|sunny) = P(sunny|B) * P(B) / P(sunny) 

where sunny is our evidence (the resulting weather condition for 

today). 

 From these equations, 

o if event A is more likely to result in sunny weather than event B, 

then the posterior probability of A occurring, given that the 

resulting weather condition for today is sunny, will be higher than 

the posterior probability of B occurring. 

o Conversely, if event B is more likely to result in sunny weather than 

event A, then the posterior probability of B occurring, given that the 

resulting weather condition for today is sunny, will be higher than 

the posterior probability of A occurring. 

 
2.4 Application of Bayes' theorem in Artificial intelligence: 

 It is used to calculate the next step of the robot when the already 

executed step is given. 

 Bayes' theorem is helpful in weather forecasting. 

 
Naive Bayes Theorem 

The dentistry example illustrates a commonly occurring pattern in which a single 

cause directly influences a number of effects, all of which are conditionally 

independent, given the cause. The full joint distribution can be written as 
 

Such a probability distribution is called a naive Bayes model—“naive” because it is 

often used (as a simplifying assumption) in cases where the “effect” variables are not 

strictly independent given the cause variable. (The naive Bayes model is sometimes 

called a Bayesian classifier, a somewhat careless usage that has prompted true 

Bayesians to call it the idiot Bayes model.) In practice, naive Bayes systems often 

work very well, even when the conditional independence assumption is not strictly 

true 
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3. Explain in detail about Bayesian Network 

 

 
3.1 Bayesian Network 

 "A Bayesian network is a probabilistic graphical model which represents a 

set of variables and their conditional dependencies using a directed 

acyclic graph."

 It is also called a Bayes network, belief network, decision network, 

or Bayesian model.

 Bayesian Network can be used for building models from data and experts 

opinions,and it consists of two parts:

o Directed Acyclic Graph 

o Table of conditional probabilities 

 The generalized form of Bayesian network that represents and solve 

decisionproblems under uncertain knowledge is known as an Influence 

diagram.

 It is used to represent conditional dependencies.

 It can also be used in various tasks including prediction, anomaly 

detection, diagnostics, automated insight, reasoning, time series 

prediction, and decision making under uncertainty.

 A Bayesian network graph is made up of nodes and Arcs (directed links).
 

Figure 2.1 – Example for Bayesian Network 

 Each node corresponds to the random variables, and a variable can be 

continuous or discrete.
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 Arc or directed arrows represent the causal relationship or conditional 

probabilities between random variables.

 These directed links or arrows connect the pair of nodes in the graph.

 These links represent that one node directly influence the other node, and 

if there is no directed link that means that nodes are independent with 

each other.

Example 

In the figure 2.1, A, B, C, and D are random variables represented by 

the nodes of the network graph. 

 Considering node B, which is connected with node A by a directed 

arrow, then node A is called the parent of Node B. 

 Node C is independent of node A. 

 The Bayesian network graph does not contain any cyclic graph. Hence, 

it is known as a directed acyclic graph or DAG.

 The Bayesian network has mainly two components:

1. Causal Component 

2. Actual numbers 

 
 Each node in the Bayesian network has condition probability 

distribution P(Xi |Parent(Xi) ), which determines the effect of the 

parent on that node.

 Bayesian network is based on Joint probability distribution and 

conditional probability.

 
3.2 Joint probability distribution: 

 If variables are x1, x2, x3,....., xn, then the probabilities of a different 

combination of x1, x2, x3.. xn, are known as Joint probability 

distribution.

 P[x1, x2, x3,   ,xn], can be written as the following way in terms of the

joint probability distribution. 

= P[x1| x2, x3,....., xn]. p[x2, x3,  , xn] 

= P[x1| x2, x3,....., xn]P[x2|x3,....., xn]  P[xn-1|xn]P[xn]. 

 In general for each variable Xi,

P(Xi|Xi-1, ............. , X1) = P(Xi |Parents(Xi )) 

 
3.3 Constructing Bayesian Network 



CS 3491 – ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING UNIT 2 

 

R.Manickavasagan,AP/CSE 
 

 

 
 

Global Semantics 
 

Local Semantics 
 
 

 
Markov Blanket 

 Each node is conditionally independent of all others given its 

Markov blanket: parents + children + children’s parents 

 
3.4 Example: 

Harry installed a new burglar alarm at his home to detect burglary. 

The alarm reliably responds at detecting a burglary but also responds 

for minor earthquakes. Harry has two neighbors David and Sophia, 

who have taken a responsibility to inform Harry at work when they 

hear the alarm. David always calls Harry when he hears the alarm, 

but sometimes he got confused with the phone ringing and calls at 

that time too. On the other hand, Sophia likes to listen to high music, 

so sometimes she misses to hear the alarm. Here we would like to 

compute the probability of Burglary Alarm. 

 
Problem: 

Calculate the probability that alarm has sounded, but there is 

neither a burglary, nor an earthquake occurred, and David and 

Sophia both called the Harry. 
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Solution: 

 The Bayesian network for the above problem is given in figure 2.2. 

The network structure is showing that burglary and earthquake is 

the parent node of the alarm and directly affecting the probability 

of alarm's going off, but David and Sophia's calls depend on alarm 

probability.

 

 
Figure 2.2 - The Bayesian network for the example problem 

 

 

 

  

  

  

  
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All events occurring in this network: 

o Burglary (B) 

o Earthquake(E) 

o Alarm(A) 

o David Calls(D) 

o Sophia calls(S) 

 
Write the events of problem statement in the form of probability: 

P[D, S, A, B, E], 

 
Rewrite the probability statement using joint probability distribution: 

 

 

 
Let's take the observed probability for the Burglary and earthquake 

component: 

 P(B=True) = 0.002, which is the probability of burglary. 

 P(B=False)= 0.998, which is the probability of no burglary. 

 P(E=True)= 0.001, which is the probability of a minor earthquake 

 P(E=False)= 0.999, Which is the probability that an earthquake not 

occurred. 

 
 

 
Conditional probability table for Alarm A: 

The Conditional probability of Alarm A depends on Burglar and 

earthquake: 

B E P(A= True) P(A= False) 

True True 0.94 0.06 

True False 0.95 0.04 

False True 0.31 0.69 

False False 0.001 0.999 

 
Conditional probability table for David Calls: 

The Conditional probability of David that he will call depends on the 

probability of Alarm. 
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A P(D= True) P(D= False) 

True 0.91 0.09 

False 0.05 0.95 

 

 
Conditional probability table for Sophia Calls: 

The Conditional probability of Sophia that she calls is depending on 

its Parent Node "Alarm." 

A P(S= True) P(S= False) 

True 0.75 0.25 

False 0.02 0.98 

 
From the formula of joint distribution, the problem statement in the form of 

probability distribution: 

P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A)*P (A|¬B ^ ¬E) *P (¬B) *P (¬E). 

= 0.75* 0.91* 0.001* 0.998*0.999 

= 0.00068045. 

Hence, a Bayesian network can answer any query about the domain 

by using Joint distribution. 

 
3.5 The semantics of Bayesian Network: 

There are two ways to understand the semantics of the Bayesian network, 

which is given below: 

1. To understand the network as the representation of the Joint 

probability distribution. 

It is helpful to understand how to construct the network. 

2. To understand the network as an encoding of a collection of 

conditional independence statements. 

It is helpful in designing inference procedure. 

 
3.6 Applications of Bayesian networks in AI 

Bayesian networks find applications in a variety of tasks such as: 

1. Spam filtering: 

a. A spam filter is a program that helps in detecting unsolicited and 

spam mails. Bayesian spam filters check whether a mail is spam 

or not. 
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2. Biomonitoring: 

a. This involves the use of indicators to quantify the concentration of 

chemicals in the human body. 

3. Information retrieval: 

a. Bayesian networks assist in information retrieval for research, 

which is a constant process of extracting information from 

databases. 

4. Image processing: 

a. A form of signal processing, image processing uses mathematical 

operations to convert images into digital format. 

5. Gene regulatory network: 

a. A Bayesian network is an algorithm that can be applied to gene 

regulatory networks in order to make predictions about the effects 

of genetic variations on cellular phenotypes. 

b. Gene regulatory networks are a set of mathematical equations that 

describe the interactions between genes, proteins, and metabolites. 

c. They are used to study how genetic variations affect the 

development of a cell or organism. 

6. Turbo code: 

a. Turbo codes are a type of error correction code capable of achieving 

very high data rates and long distances between error correcting 

nodes in a communications system. 

b. They have been used in satellites, space probes, deep-space 

missions, military communications systems, and civilian wireless 

communication systems, including WiFi and 4G LTE cellular 

telephone systems. 

7. Document classification: 

a. The main issue is to assign a document multiple classes. The task 

can be achieved manually and algorithmically. Since manual effort 

takes too much time, algorithmic documentation is done to 

complete it quickly and effectively. 

 

 
4. Explain in detail about Bayesian Inference and its type Exact Inference 

with suitable example. 

 
Exact inference in Bayesian networks 

 
The basic task for any probabilistic inference system is to compute the 

posterior probability distribution for a set of query variables, given some observed 

event-that is, some assignment of values to a set of evidence variables. We will use 
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the notation X denotes the query variable; E denotes the set of evidence variables 

El, . . . , Em, and e is a particular observed event; Y will denote the nonevidence 

variables Yl, . . . , (some- times called the hidden variables). Thus, the complete set 

of variables X = {X} U E U Y. A typical query asks for the posterior probability 

distribution P(X|e)4 

 
In the burglary network, we might observe the event in which JohnCalls = 

true and MaryCalls = true. We could then ask for, say, the probability that a 

burglary has occurred: 

 

 
Inference by enumeration 

 
Conditional probability can be computed by summing terms from the full joint 

distribution. More specifically, a query P(X|e) can be answered using Equation, 

which we repeat here for convenience: 

 

Now, a Bayesian network gives a complete representation of the full joint 

distribution. More specifically, Equation shows that the terms P(x, e, y) in the joint 

distribution can be written as products of conditional probabilities from the 

network. Therefore, a query can be answered using a Bayesian network by 

computing sums of products of conditional probabibities from the network. In Figure 

an algorithm, ENUMERATE-JOINT-ASK, was given for inference by enumeration 

from the full joint distribution. The algorithm takes as input a full joint distribution 

P and looks up values therein. It is a simple matter to modify the algorithm so that 

it takes as input a Bayesian network bn and "looks up" joint entries by multiplying 

the corresponding CPT entries from bn. 

 
Consider the query P(Burglary1 JohnCalls = true, &Jury Calls = true). The 

hidden variables for this query are Earthquake and Alarm. From Equation (13.6), 

using initial letters for the variables in order to shorten the expressions, we have 
 

The semantics of Bayesian networks then gives us an expression in terms of 

CPT entries. For simplicity, we will do this just for Burglizry = true: 
 



CS 3491 – ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING UNIT 2 

 

R.Manickavasagan,AP/CSE 
 

To compute this expression, we have to add four terms, each computed by 

multiplying five numbers. In the worst case, where we have to sum out almost all 

the variables, the complexity of the algorithm for a network with n Boolean 

variables is O(n2n). An improvement can be obtained from the following simple 

observations: the P(b) term is a constant and can be moved outside the 

summaltions over a and e, and the 13(e) term can be moved outside the summation 

over a. Hence, we have 
 

This expression can be evaluated by looping through the variables in order, 

multiplying CPT entries as we go. For each summation, we also need to loop over 

the variable's possible values. The structure of this computation is shown in Figure. 

Using the numbers from Figure, we obtain P(b| j , m) = a x 0.00059224. 'The 

correspondingc omputation for ~b yields a x 0.0014919; hence 

 

This expression can be evaluated by looping through the variables in order, 

multiplying CPT entries as we go. For each summation, we also need to loop over 

the variable's possible values. 

 

 
The structure of this computation is shown in above Figure. Using the numbers 

from Figure, we obtain P(b| j , m) = a x 0.00059224. 'The co~respondingc 

omputation for ~b yields a x 0.0014919; hence 
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That is, the chance of a burglary, given calls from both neighbors, is about 28%. 

The evaluation process for the expression in Equation is shown as an expression 

tree in Figure. 

 
The variable elimination algorithm 

The enumeration algorithm can be improved substantially by eliminating 

repeated calculations of the kind illustrated in Figure. The idea is simple: do the 

calculation once and save the results for later use. This is a form of dynamic 

programming. There are several versions of this approach; we present the variable 

elimination algorithm, which is the simplest. Variable elimination works by 

evaluating expressions such as Equation in right-to-left order (that is, bottom-up in 

Figure). Intermediate results are stored, and summations over each variable are 

done only for those portions of the expression that depend on the variable. Let us 

illustrate this process for the burglary network. We evaluate the expression 

 
 

 
The complexity of exact inference 

 
We have argued that variable elimination is more efficient than enumeration 

because it avoids repeated computations (as well as dropping irrelevant variables).  

The time and space requirements of variable elimination are dominated by the size 

of the largest factor constructed during the operation of the algorithm. This in turn 

is determined by the order of elimination of variables and by the structure of the 

network. 

 
The burglary network of Figure belongs to the family of networks in which 

there is at most one undirected path between any two nodes in the network. These 

are called singly connected networks or polytrees, and they have a particularly 

nice property: The time and space complexity of exact inference in polytrees is linear 

in the size of the network. I-Iere, the size is defined as the number of CPT entries; if 
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the number of parents of each node is bounded by a constant, then the complexity 

will also be linear in the number of nodes. These results hold for any ordering 

consistent with the topological ordering of the network . 

 
For multiply connected networks, such as that of Figure, variable 

elimination can have exponential time and space complexity in the worst case, even 

when the number of parents per node is bounded. This is not surprising when one 

considers that, because it includes inference in propositional logic as a special case, 

inference in Bayesian networks is 1W-hard. In fact, it can be shown that the 

problem is as hard as that of computing the number of satisfying assignments for a 

propositional logic formula. This means that it is #P-hard ("number-P hard")-that is, 

strictly harder than NP-complete problems. 

 
There is a close connection between the complexity of Bayesian network 

inference and the complexity of constraint satisfaction problems (CSPs), the 

difficulty of solving a discrete CSP is related to how "tree-lilce" its constraint graph 

is Measures such as hypertree width, which bound the complexity of solving a 

CSP, can also be applied directly to Bayesian networks. Moreover, the variable 

elimination algorithm can be generalized to solve CSPs as well as Bayesian 

networks. 

 

5. Explain Causal Network or Causal Bayesian Network in Machine 

5.1 Causal Network or Causal Bayesian Network 

 A causal network is an acyclic digraph arising from an evolution of 

a substitution system, and representing its history.

 In an evolution of a multiway system, each substitution event is a vertex 

in a causal network.

 Two events which are related by causal dependence, meaning one occurs 

just before the other, have an edge between the corresponding vertices in 

the causal network.

 More precisely, the edge is a directed edge leading from the past event to 

the future event.

 Refer Figure 2.3 for an example causal network.

 A CBN is a graph formed by nodes representing random variables, 

connected by links denoting causal influence.

https://mathworld.wolfram.com/AcyclicDigraph.html
https://mathworld.wolfram.com/SubstitutionSystem.html
https://mathworld.wolfram.com/MultiwaySystem.html
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Figure 2.3 – Causal Network Example 

 

 Some causal networks are independent of the choice of evolution, and 

these are called causally invariant.

 
 Structural Causal Models (SCMs).

 SCMs consist of two parts: a graph, which visualizes causal 

connections, and equations, which express the details of the 

connections. a graph is a mathematical construction that consists 

of vertices (nodes) and edges (links). 

 SCMs use a special kind of graph, called a Directed Acyclic Graph 

(DAG), for which all edges are directed and no cycles exist. 

 DAGs are a common starting place for causal inference. 

 Bayesian and causal networks are completely identical. However, the 

difference lies in their interpretations. 

Fire -> Smoke 
 

 A network with 2 nodes (fire icon and smoke icon) and 1 edge (arrow 

pointing from fire to smoke).

 This network can be both a Bayesian or causal network.

 The key distinction, however, is when interpreting this network.

 For a Bayesian network, we view the nodes as variables and the arrow 

as a conditional probability, namely the probability of smoke given 

information about fire.

 When interpreting this as a causal network, we still view nodes as 

variables, however, the arrow indicates a causal connection.

https://mathworld.wolfram.com/CausalInvariance.html
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 In this case, both interpretations are valid. However, if we were to flip the 

edge direction, the causal network interpretation would be invalid, since 

smoke does not cause fire.

 
Implementing Causal Inference 

 
1.The do-operator 

 The do-operator is a mathematical representation of a physical 

intervention. 

 If the model starts with Z → X → Y, simulate an intervention in X by 

deleting all the incoming arrows to X, and manually setting X to some 

value x_0. Refer Figure 2.4 denotes the example of do-operator. 

 

Figure 2.4 – do-operator Example 
 

 

P(Y|X) is the conditional probability that is, the probability of Y given 

an observation of X. While, P(Y|do(X)) is the probability of Y given 

an intervention in X. 
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2: Confounding 

A simple example of confounding is shown in the figure 2.5 below. 
 

Figure 2.5 – Confounding Example 

 

 In this example, age is a confounder of education and wealth. In 

other words, if trying to evaluate the impact of education on wealth 

one would need to adjust for age. 

 Adjusting for (or conditioning on) age just means that when 

looking at age, education, and wealth data, one would compare 

data points within age groups, not between age groups. 

 Confounding is anything that leads to P(Y|X) being different than 

P(Y|do(X)). 

 
3: Estimating Causal Effects 

 Treatment effect = (Outcome under E) minus (Outcome under C), 

that is the difference between the outcome a child would receive if 

assigned to treatment E and the outcome that same child would 

receive if assigned to treatment C. These are called potential 

outcomes. 

 

 

6. Explain approximate inference in Bayesian network (BN) 

 
Given the intractability of exact inference in large networks, we will now 

consider approximate inference methods. This section describes randomized 

sampling algorithms, also called Monte Carlo algorithms, that provide approximate 

answers whose accuracy depends on the number of samples generated. 

 
They work by generating random events based on the probabilities in the 

Bayes net and counting up the different answers found in those random events. 

With enough samples, we can get arbitrarily close to recovering the true probability 

distribution—provided the Bayes net has no deterministic conditional distributions 
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Direct sampling methods 

The primitive element in any sampling algorithm is the generation of samples 

from a known probability distribution. For example, an unbiased coin can be 

thought of as a random variable Coin with values (heads, tails) and a prior 

distribution P(Coin) = (0.5,0.5). Sampling from this distribution is exactly like 

flipping the coin: with probability 0.5 it will return heads, and with probability 0.5 

it will return tails. 

Given a source of random numbers r uniformly distributed in the range [0,1], 

it is a simple matter to sample any distribution on a single variable, whether 

discrete or continuous. This is done by constructing the cumulative distribution for 

the variable and returning the first value whose cumulative probability exceeds r 

 
We begin with a random sampling process for a Bayes net that has no evidence 

associated with it. The idea is to sample each variable in turn, in topological order. 

The probability distribution from which the value is sampled is conditioned on the 

values already assigned to the variable’s parents. (Because we sample in topological 

order, the parents are guaranteed to have values already.) This algorithm is shown 

in Figure. Applying it to the network with the ordering Cloudy, Sprinkler, Rain, 

WetGrass, we might produce a random event as follows: 

 

 

Rejection sampling in Bayesian networks 

Rejection sampling is a general method for producing samples from a hard- 

to-sample distribution given an easy-to-sample distribution. In its simplest form, it 

can be used to compute conditional probabilities that is, to determine P(X |e). The 

REJECTION-SAMPLING algorithm is shown in Figure. First, it generates samples 

from the prior distribution specified by the network. Then, it rejects all those that 

do not match the evidence. Finally, the estimateˆP (X =x|e) is obtained by counting 

how often X =x occurs in the remaining samples. 
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Let ˆP(X |e) be the estimated distribution that the algorithm returns; this 

distribution is computed by normalizing NPS(X,e), the vector of sample counts for 

each value of X where the sample agrees with the evidence e: 
 

 

 
 

Inference by Markov chain simulation 

In this section, we describe the Markov chain Monte Carlo (MCMC) 

algorithm for inference in Bayesian networks. We will first describe what the 

algorithm does, then we will explain why it works and why it has such a 

complicated name. 

 
The MCMC algorithm 

 
MCMC generates each event by making a random change to the preceding 

event. It is therefore helpful to think of the network as being in a particular current 

state specifying a value for every variable. The next state is generated by randomly 

sampling a value for one of the nonevidence variables Xi,conditioned on the current 

values of the variables in the Markov blanket of Xi. MCMC therefore wanders 

randomly around the state space-the space of possible complete assignments- 

flipping one variable at a time, but keeping the evidence variables fixed. 

 
Consider the query P(Rain1 Sprinkler = true, Wet Grass = true) applied to the 

network in Figure. The evidence variables Sprinkler and WetGrass are fixed to their 

observed values and the hidden variables Cloudy and Rain are initialized randomly- 

let us say to true and false respectively. Thus, the initial state is [true, true, false, 

true]. Now the following steps are executed repeatedly: 
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1. Cloudy is sampled, given the current values of its Markov blanket variables: in 

this case, we sample from P(Cloudy1 Sprinkler = true, Rain =false). Suppose the 

result is Cloudy =false. Then the new current state is [false, true, false, true]. 

 
2. Rain is sampled, given the current values of its Markov blanket variables: in this 

case, we sample from P(Rain1 Cloudy =false, Sprinkler = true, WetGrass = true). 

Suppose this yields Rain = true. The new current state is [false, true, true, true]. 

Each state visited during this process is a sample that contributes to the estimate 

for the query variable Rain. If the process visits 20 states where Rain is true and 60 

states where Rain is false, then the answer to the query is NORMALIZE 
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